wingolog

about | projects | photos

. subscribe &

. related

o the merry month of ma

o meta data
o a wingolog user's manual
o lakewards

o 10 vears of wingolog

o meta: per-tag feeds

o on the new posix

o metablog

o biting the hand that feeds
o I'm telling you

ffs ssl

17 October 2014 2:33 PM (ssl | tls | ffs | meta | https | http | hsts | pki |
networking)

I just set up SSETLS on my web site. Everything can be had via https://wingolog.org/, and things
appear to work. However the process of transitioning even a simple web site to SSL is so clownshoes
bad that it's amazing anyone ever does it. So here's an incomplete list of things that can go wrong when
you set up TLS on a web site.

Y ou search "how to set up https" on the Googs and click the first link. It takes you here which tells you
how to use StartSSL, which generates the key in your browser. Whoops, your private key is now
known to another server on this internet! Why do people even recommend this? It's the worst of the
worst of Javascript crypto.

OK so you decide to pay for a certificate, assuming that will be better, and because who knows what's
going on with StartSSL. You've heard of RapidSSL so you go to rapidssl.com. WTF their price is 49
dollars for a stupid certificate? Y our domain name was only 10 dollars, and domain name resolution is
an actual ongoing service, unlike certificate issuance that just happens one time. You can't believe it so
you click through to the prices to see, and you get this:

http://wingolog.org/
http://wingolog.org/about/
http://wingolog.org/projects/
http://wingolog.org/photos/
http://wingolog.org/feed/atom
http://wingolog.org/archives/2012/03/12/the-merry-month-of-ma
http://wingolog.org/archives/2010/12/13/meta-data
http://wingolog.org/archives/2014/08/27/a-wingolog-users-manual
http://wingolog.org/archives/2012/08/15/lakewards
http://wingolog.org/archives/2012/05/30/10-years-of-wingolog
http://wingolog.org/archives/2011/04/25/meta-per-tag-feeds
http://wingolog.org/archives/2010/12/17/on-the-new-posix
http://wingolog.org/archives/2008/04/23/metablog
http://wingolog.org/archives/2008/03/07/biting-the-hand-that-feeds
http://wingolog.org/archives/2008/02/29/im-telling-you
http://wingolog.org/archives/2014/10/17/ffs-ssl
http://wingolog.org/tags/ssl
http://wingolog.org/tags/tls
http://wingolog.org/tags/ffs
http://wingolog.org/tags/meta
http://wingolog.org/tags/https
http://wingolog.org/tags/http
http://wingolog.org/tags/hsts
http://wingolog.org/tags/pki
http://wingolog.org/tags/networking
https://thoughtstreams.io/glyph/there-is-no-ssl/
https://wingolog.org/
https://www.digitalocean.com/community/tutorials/how-to-set-up-apache-with-a-free-signed-ssl-certificate-on-a-vps
http://matasano.com/articles/javascript-cryptography/
https://www.rapidssl.com/

Problem loading “products.geotrust.com”

https://products.geotrust.com/forders/rapidssl.do?ref=45484 8BRAP&0985&tid=rs_hp_buy «

3
The site at "https://products.geotrust.com/orders/rapidssl.do?
ref=454848RAP60985&tid=rs_hp_buy"” seems to be unavailable. The precise error was:
FPeer failed to perform TLS handshake
It may be temporarily unavailable or moved to a new address. You may wish to verify that your
internet connection is working correctly.
Try again
Whatttttttttt

OK so I'm using Epiphany on Debian and I think that uses the system root CA list which is different
from what Chrome or Firefox do but Jesus this is shaking my faith in the internet if I can't connect to an
SSL certificate provider over SSL.

Y ou remember hearing something on Twitter about cheaper certs, and oh ho ho, it's rapidsslonline.com,
not just RapidSSL. WTF. OK. It turns out Geotrust and RapidSSL and Verisign are all owned by
Symantec anyway. So you go and you pay. Paying is the first thing you have to do on rapidsslonline,
before anything else happens. Welp, cross your fingers and take out your credit card, cause SSLanta
Clause is coming to town.

Recall, distantly, that SSL has private keys and public keys. To create an SSL certificate you have to
generate a key on your local machine, which is your private key. That key shouldn't leave your control -
- that's why the DigitalOcean page is so bogus. The certification authority (CA) then needs to receive
your public key and then return it signed. You don't know how to do this, because who does? So you

Google and copy and paste command line snippets from a website. Whoops!

Hey neat it didn't delete your home directory, cool. Let's assume that your local machine isn't rooted and
that your server isn't rooted and that your hosting provider isn't rooted, because that would invalidate
everything. Oh what so the NSA and the five eyes have an ongoing program to root servers? Um, well,
water under the bridge I guess. Let's make a key. You google "generate ssl key" and this is the first
result.

openssl genrsa -des3 -out foo.key 1024

Whoops, you just made a 1024-bit key! I don't know if those are even accepted by CAs any more.
Happily if you leave off the 1024, it defaults to 2048 bits, which I guess is good.

Also you just made a key with a password on it (that's the -des3 part). This is eminently pointless. In
order to use your key, your web server will need the decrypted key, which means it will need the
password to the key. Adding a password does nothing for you. If you lost your private key but you did

https://wiki.gnome.org/Apps/Web
https://www.rapidsslonline.com/
http://thejh.net/misc/website-terminal-copy-paste
http://www.heise.de/ct/artikel/NSA-GCHQ-The-HACIENDA-Program-for-Internet-Colonization-2292681.html

have it password-protected, you're still toast: the available encryption cyphers are meant to be fast, not
hard to break. Any serious attacker will crack it directly. And if they have access to your private key in
the first place, encrypted or not, you're probably toast already.

OK. So let's say you make your key, and make what's called the "ERFCSR", to ask for the cert.
openssl req -new -key foo.key -out foo.csr

Now you're presented with a bunch of pointless-looking questions like your country code and your
"organization". Seems pointless, right? Well now I have to live with this confidence-inspiring dialog,
because I left off the organization:

wingolog x | 4
€ a wingolog.org
You are connected to
wingolog.org
which is run by
(unknown)

Verified by: GeoTrust Inc.

& The connection to this website is secure.

(7] More Information...

Don't mess up, kids! But wait there's more. You send in your CSR, finally figure out how to receive
mail for hostmaster@yourdomain.org because that's what "verification" means (not, god forbid,
control of the actual web site), and you get back a certificate. Now the fun starts!

How are you actually going to serve SSL? The truly paranoid use an out-of-process SSL terminator.
Seems legit except if you do that you lose any kind of indication about what IP is connecting to your

HTTP server. You can use a more HTTP-oriented terminator like bud but then you have to mess with
X-Forwarded-For headers and you only get them on the first request of a connection. You could just
enable mod_ssl on your Apache, but that code is terrifying, and do you really want to be running
Apache anyway?

In my case I ended up switching over to nginx, which has a startlingly underspecified configuration
language, but for which the Debian defaults are actually not bad. So you uncomment that part of the
configuration, cross your fingers, Google a bit to remind yourself how systemd works, and restart the
web server. Haich Tee Tee Pee Ess ahoy! But did you remember to disable the NULL authentication
method? How can you test it? What about the NULL encryption method? These are actual things that
are configured into OpenSSL, and specified by standards. (What is the use of a secure communications
standard that does not provide any guarantee worth speaking of?) So you google, copy and paste some
inscrutable incantation into your config, turn them off. Great, now you are a dilettante tweaking your
encryption parameters, [hope you feel like a fool because I sure do.

Except things are still broken if you allow RC4! So you better make sure you disable RC4, which

http://www.daemonology.net/blog/2009-09-28-securing-https.html
https://blog.indutny.com/8.bud-a-tls-swiss-knife
https://wiki.mozilla.org/Security/Server_Side_TLS#Nginx
http://www.isg.rhul.ac.uk/tls/

incidentally is exactly the opposite of the advice that people were giving out three years ago.

OK, so you took your certificate that you got from the CA and your private key and mashed them into
place and it seems the web browser works. Thing is though, the key that signs your certificate is
possibly not in the actual root set of signing keys that browsers use to verify the key validity. If you put
Just your key on the web site without the "intermediate CA", then things probably work but browsers
will make an additional request to get the intermediate CA's key, slowing down everything. So you
have to concatenate the text files with your key and the one with the intermediate CA's key. They look
the same, just a bunch of numbers, but don't get them in the wrong order because apparently the internet
says that won't work!

But don't put in too many keys either! In this image we have a cert for jsbin.com with one intermediate
CA:

And here is the same but with an a different root that signed the GeoTrust Global CA certificate.
Apparently there was a time in which the GeoTrust cert hadn't been added to all of the root sets yet, and
it might not hurt to include them all:

Thing is, the first one shows up "green" in Chrome (yay), but the second one shows problems
("outdated security settings" etc etc etc). Why? Because the link from Equifax to Geotrust uses a SHA-1

signature. and apparently that's not a good idea any more. Good times? (Poor Remy last night was doing
some basic science on the internet to bring you these results.)

Or is Chrome denying you the green because it was RapidSSL that signed your certificate with SHA-1
and not SHA-2567 It won't tell you! So you Google and apply snakeoil and beg your CA to reissue
your cert, hopefully they don't charge for that, and eventually all is well. Chrome gives you the green.

Or does it? Probably not, if you're switching from a web site that is also available over HTTP. Probably
you have some images or CSS or Javascript that's being loaded over HTTP. You fix your web site to
have scheme-relative URLSs (like //wingolog.org/ instead of http://wingolog.org/), and make
sure that your software can deal with it all (I had to patch Guile :P). Update all the old blog posts! Edit
all the HTMLs! And finally, green! You're golden!

Or not! Because if you left on SSLv3 support you're still broken! Also, TLSv1.0, which is actually
greater than SSLv3 for no good reason, also has problems; and then TLS1.1 also has problems, so you
better stick with just TLSv1.2. Except, except, older Android phones don't support TLSv1.2, and
neither does the Googlebot, so you don't get the rankings boost you were going for in the first place. So
you upgrade your phone because that's a thing you want to do with your evenings, and send snarky
tweets into the ether about scumbag google wanting to promote HTTPS but not supporting the latest
TLS version.

So finally, finally, you have a web site that offers HTTPS and HTTP access. You're good right? Except
no! (Catching on to the pattern?) Because what happens is that people just type in web addresses to their
URL bars like "google.com" and leave off the HTTP, because why type those stupid things. So you
arrange for http://www.wobsite.com to redirect https://www.wobsite.com for users that have
visited the HTTPS site. Except no! Because any network attacker can simply strip the redirection from
the HTTP site.

The "solution" for this is called HTTP Strict Transport Security, or HSTS. Once a visitor visits your
HTTPS site, the server sends a response that tells the browser never to fetch HTTP from this site.
Except that doesn't work the first time you go to a web site! So if you're Google, you friggin add your

https://www.imperialviolet.org/2011/09/23/chromeandbeast.html
https://shaaaaaaaaaaaaa.com/
https://twitter.com/rem
https://www.imperialviolet.org/2014/10/14/poodle.html
http://googlewebmastercentral.blogspot.fr/2014/08/https-as-ranking-signal.html
http://www.thoughtcrime.org/software/sslstrip/
https://chromium.googlesource.com/chromium/chromium/+/master/net/base/transport_security_state_static.h

name to a static list in the browser. EXCEPT EVEN THEN watch out for the Delorean.

And what if instead they go to wobsite.com instead of the www.wobsite.com that you configured?
Well, better enable HSTS for the whole site, but to do anything useful with such a web request you'll
need a wildcard certificate to handle the multiple URLSs, and those run like 150 bucks a year, for a one-
bit change. Or, just get more single-domain certs and tack them onto your cert, using the precision tool
cat, but don't do too many, because if you do you will overflow the initial congestion window of the
TCP connection and you'll have to wait for an ACK on your certificate before you can actually
exchange keys. Don't know what that means? Better look it up and be an expert, or your wobsite's
going to be slow!

If your security goals are more modest, as they probably are, then you could get burned the other way:
you could enable HSTS, something could go wrong with your site (an expired certificate perhaps), and
then people couldn't access your site at all, even if they have no security needs, because HTTP is turned
off.

Now you start to add secure features to your web app, safe with the idea you have SSL. But better not
forget to mark your cookies as secure, otherwise they could be leaked in the clear, and better not forget
that your website might also be served over HTTP. And better check up on when your cert expires, and
better have a plan for embedded browsers that don't have useful feedback to the user about certificate
status, and what about your CA's audit trail, and better stay on top of the new developments in security!
Did you read it? Did you read it? Did you read it?

It's a wonder anything works. Indeed I wonder if anything does.

27 responses

1. Fedor Indutny says:
17 October2014 2:46 PM

Good post, thank you!

So, on the matter of wildcards, multiple certs, and CWND. You could configure multiple contexts
in bud, each for a different domain name (using TLS protocol SNI extension, which works in the
most of the browsers).

In case of such configuration, only relevant subset of certs will be sent to the client. Keeping you
with the safe ServerHello packet size.

2. Derek says:
17 October2014 3:36 PM

Y ou forgot to mention how ECC is totally hacked by NSA and they will be reading all your
traffics if you use ECDH. I really liked your post.

On the other hand, a strong password on your private key should not be crackable, even with
"fast" ciphers like AES and 3DES. Yes, it needs to be in-the-clear for the browser to use it.
Perhaps you'd like to add a level of insanity to the pile with an HSM (Hardware Security Module)
like the TPM or a smartcard? Configuring OpenSSL engines is something everyone does, no?

Self-sign your certificate and be a hipster; claim you didn't want their traffic anyway, if they're
scared off by someone refusing to kowtow to the CA racket.

3. Nicholas says:
17 October2014 5:18 PM

https://chromium.googlesource.com/chromium/chromium/+/master/net/base/transport_security_state_static.h
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.owasp.org/index.php/SecureFlag
http://www.youtube.com/watch?v=6JLWQEuz2gA
https://blog.indutny.com/
http://gbbmtp.wordpress.com/

Great post, very entertaining and brightened my similarly long Friday.
Thanks!

. Curt says:
17 October2014 5:24 PM

Like your blog! Glad to know I'm not the only one that rode the SSL. Merry-Go-Round! One
thing to mention, the Certificate Authorities will be discontinuing the issuing of wildcard keypairs
in the near future.

. Emanuele Aina says:
17 October2014 5:57 PM

I'm currently experimenting with https://www .cloudflare.com/ssl which may sidestep much of the
pain described, let's see how it goes.

. Yousef Ourabi says:
17 October2014 6:17 PM

Yep - getting this right is hard.
Couple of points about the article.

Browsers verify SSL certificates (OCSP). This is an ongoing service that has a direct impact on
latency - so SSL *is* an ongoing service very much like DNS. However, most people don't
realize this.

Also you send in a CSR - certificate signing request - not CRT (which is usually short-hand for
certificate).

Also it gets worse - A recent OpenSSL vulnerability would still allow SSLv3 even if it was
configured with "no-ssl3": https://www .openssl.org/news/secadv_20141015.txt

This is why I built https:/snitch.io - security and SSL secured sites in particular are moving targets
and not "fire and forget". You really need an external process monitoring and auditing your
secured site.

. geeknik says:
17 October2014 6:23 PM

I find that Mozilla has some great information on setting up and configuring TLS.

https://wiki.mozilla.org/Security/Server_Side_TLS

. Michael Buckbee says:
17 October2014 6:26 PM

It's even worse than that as even if all the above is actually correct and done perfectly that you
may still not get the "green" depending on the browser as the browser makers are moving to
showing domain validated (via email) certificates as gray and only EV (extended validation) certs
as green.

Things to note: EV certs are much more expensive. You cannot get a cert that is both EV and a
Wildcard, single domains only.

http://nerd.ocracy.org/em
https://snitch.io/
https://twitter.com/geeknik
https://www.expeditedssl.com/

10.

1.

12.

Screenshots of how the various browsers show Domain vs EV certs at:

https://www .expeditedssl.com/pages/visual-security-browser-ssl-icons-and-design

. lifeforms says:

17 October2014 7:08 PM

Y ou forgot that you probably generated SHA1 certificates, which will be deprecated soon in
favor of SHA?2. Time to re-issue all your certificates!

And, that finally as thanks for all your effort, you then got compromised to hell and back through
Heartbleed!

SSL, who doesn't love it?

Nick says:
17 October2014 7:18 PM

Please don't make the fundamental mistake of assuming that SSL is actually trustworthy. Trusted,
yes, but trust-worthy, no.

Andrew says:
17 October2014 8:04 PM

I'm using latest Chrome and your site is using AES_128_CBC which means it isn't getting
forward secrecy. You need to reorder your chosen ciphers!

harrybuttle says:
17 October2014 8:11 PM

Last week 1 went through some of the same, 1 wish this was written 10 days ago! To start things
off 1 got a free cert from startssl.

Some points (and links to other sites, hope it's ok, i found them useful):

* Startssl doesn't generate the key in the browser, their web app sends the key password to their
server and gets back the generated key.

* Their key generation can be skipped and you can use your really private key.

* They include a subdomain of your choice (usually www) in the free certificate, so at least that
one is covered.

* nginx supports sni too, in case that's needed. But old versions of android browser (at least up to
gingerbread) don't support it. To quickly check if the browser supports sni: https://sni.velox.ch/

* There are some wildcard certificates for less than 100$:
http://webdesign.about.com/od/ssl/tp/cheapest-ssl-certificates.htm and with some caveats some
very cheap non-wildcard too.

* This is a fresher and better community tutorial dealing only with openssl (es. passwordless key,
example of csr info filling...)

https://www .digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-
certificates-private-keys-and-csrs

* It may be important to generate the csr with the -sha256 openssl option, to avoid the deprecated

https://lifeforms.nl/

13.

14.

15.

16.

17.

18.

shal.

* I found out the hard way the need to concatenate the intermediate between the key and the
certificate: browsers worked fine, but my apps complained.

* I should really try out sslstrip and see how effective it can be... certificate pinning will help but
not on first connection.

Gert van Dijk says:
17 October2014 8:12 PM

"StartSSL, which generates the key in your browser"

Y ou misunderstood that part! You're generating an SSL Client Certificate in your browser to
authenticate with StartCom on their control panel. Y ou should generate a private key and CSR
(SHA-2!) on your server and submit only the CSR to StartCom.

You Are Incorrect says:
17 October2014 8:21 PM

StartSSL doesn't generate your private key on the server side. You are completely incorrect about
this and your misinformation is borderline libellous!

Look up the "keygen" element in the HTMLS5 spec, to see what really occurs (hint: the key is
generated by your actual browser, and saved locally).

Mathias Bynens says:
17 October2014 8:58 PM

You fix your web site to have scheme-relative URLSs (like //wingolog.org/ instead
of http://wingolog.org/),

This is actually an anti-pattern. When a document is available over HTTPS, there’s no reason not
to include the https:// scheme and make sure that version is used at all times.

Paula says:
17 October2014 9:01 PM

the "which is run by (unknown)" is not due to missing the oranization field. any non EV
certificate would have said the same thing in Firefox. latest versions of FF don't have this issue.

Michael Catanzaro says:
17 October2014 9:01 PM

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=743339 is not the cause of your TLS issue with
GeoTrust, but it's known to completely break sites signed by GeoTrust certs for Debian users. So
add that to your bucket of things to complain about....

paul says:
17 October2014 9:34 PM

Generating a key in your browser does NOT upload the private key to the server. It only uploads
the public key, while saving the private key to local storage in the browser configuration. It's all
very clever. The purpose is for client-side authentication of browsers, not generating server
certificates. Unfortunately, in part because of the cumbersome technical implementation, client
side certificates in browsers never caught on, so we still use passwords.

https://blog.g3rt.nl/
https://mathiasbynens.be/

19.

20.

21.

22.

23.

24.

25.

hrb says:
17 October2014 9:41 PM

Stopped reading when you completely missed how StartSSL lets you generate your own key and
submit an CSR.

Nick Desaulniers says:
17 October2014 9:47 PM

Everyone's all excited for Service Workers; that they will deliver us from our offline-web-app-UX
sins, except me. Their requirement that they only be available to sites with HTTPS (to prevent
cache poisoning), and your blog post about how user friendly setting up TLS is, make me quite
doubtful that Service Workers will see wide enough adoption.

Tim says:
17 October2014 10:21 PM

FWIW, SSLs.com is cheaper plus has completely idiot-proof line-by-line cut/paste setup
Iinstructions.

But, yeah.

Kai says:
17 October2014 11:10 PM

I think for now we are better with TOR hidden services even if they don't have nice names and
you also need to tell them to others though a secure channel, but all the rest is just crap - let's hope
for GNUnet.

Jeff Tsay says:
18 October2014 0:13 AM

Thanks for this post. I recently went through almost the same process when setting up HTTPS on
my site. I got a free Rapid SSL cert with my domain registration from Namecheap, and it worked
well, but I had to gather the information from various sites to get it to work. I had forgotten about
the secure cookie stuff so after reading your post, I immediately added it. One thing that was
helpful to me was this free SSL checker: https://www .ssllabs.com/ssltest/ which gave me piece of
mind that everything was setup properly (although it didn't catch the secure cookie stuff).

It is scary that, for most developers, the steps to secure a server involves copying code snippets
from random, insecure blogs all over the world.

Sam whited says:
18 October2014 1:19 AM

Don't forget that OCSP servers can go down and cause your website to fail verification (not that it
matters anyways b/c Chrome doesn't even bother to check for non-EV certs and everything else
checks and then ignores it if it can't get an answer). Better enable OCSP stapling to fix this.

wingo says:
18 October2014 8:26 AM

Well, that was fun. Some thanks:

to Ivan Risti¢, on his pessimism regarding cipher/key exchange blacklists

http://www.hrbuckley.net/
http://nickdesaulniers.github.io/
https://www.tbray.org/ongoing/
https://solveforall.com/
https://blog.samwhited.com/
https://wingolog.org/
http://blog.ivanristic.com/
https://news.ycombinator.com/item?id=8473626

to Yousef Ourabi, for his comment above; I didn't consider the burden of OCSP on CAs. Also 1
think Y ousef was the only one to recognize the CSR/CRT typo, and for mentioning another
bizarre OpenSSL SSLv3 downgrade bug; the idea of a proxy server written in OCaml is getting
more attractive by the day.

to evvvvverrrrryyyyone that pointed out that the Firefox "unknown organization" thing is because
of EV certificates. EV certificate dogpile!

And a big no-thanks to people that didn't click through to read the StartSSL article on
DigitalOcean. I wasn't talking about the client-side cert. There is a screenshot there of your private
key in a web browser textarea; I work on browsers for a living and there is no way you could get
me to treat that as safe, for all of the reasons on the Matasano JS crypto article.

26. lanzz says:
18 October2014 9:16 AM

That private key is displayed by StartSSL only when they're generating it, because, well, they
need to give it to you. That won't happen if you generate your own private key and CSR.

27. wingo says:
18 October2014 9:53 AM
lanzz, no argument there -- I'm told that StartSSL can be used in a secure way, and I might give it
a go again one of these days. I just think it's irresponsible to have the option of generating your
key in the browser (if that's the case) or on their side (probably better from a crypto perspective as
the browser often doesn't have a CSPRNG but totally insecure because in that case they definitely
have your private key).

Unfortunately, "StartSSL can be used in a secure way" in no way contradicts the fact that the first
search result (for me) advises you to use StartSSL in an insecure way. There are many ways for
things to go wrong if you don't know what you're about.

Leave a Reply
Name
Mail (will not be published)
Website

What's your favorite number?

Submit Comment

powered by tekuti

http://yousefourabi.com/
http://wingolog.org/
http://wingolog.org/software/tekuti/

